Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36442404

RESUMEN

Interspecific hybrids are highly complex organisms, especially considering aspects related to the organization of genetic material. The diversity of possibilities created by the genetic combination between different species makes it difficult to establish a large-scale analysis methodology. An example of this complexity is Tambacu, an interspecific hybrid of Colossoma macropomum (Tambaqui) and Piaractus mesopotamicus (Pacu). Either genotype represents an essential role in South American aquaculture. However, despite this importance, the genetic information for these genotypes is still highly scarce in specialized databases. Using RNA-Seq analysis, we characterized the transcriptome of white muscle from Pacu, Tambaqui, and their interspecific hybrid (Tambacu). The sequencing process allowed us to obtain a significant number of reads (approximately 53 billion short reads). A total of annotated contigs were 37,285, 96,738, and 158,709 for Pacu, Tambaqui, and Tambacu. After that, we performed a comparative analysis of the transcriptome of the three genotypes, where we evaluated the differential expression (Tambacu vs Pacu = 11,156, and Tambacu vs Tambaqui = 876) profile of the transcript and the degree of similarity between the nucleotide sequences between the genotypes. We assessed the intensity and pattern of expression across genotypes using differential expression information. Clusterization analysis showed a closer relationship between Tambaqui and Tambacu. Furthermore, digital differential expression analysis selected some target genes related to essential cellular processes to evaluate and validate the expression through the RT-qPCR. The RT-qPCR analysis demonstrated significantly (p < 0.05) elevated expression of the mafbx, foxo1a, and rgcc genes in the hybrid compared to the parents. Likewise, we can observe genes significantly more expressed in Pacu (mtco1 and mylpfa) and mtco2 in Tambaqui. Our results showed that the phenotype presented by Tambacu might be associated with changes in the gene expression profile and not necessarily with an increase in gene variability. Thus, the molecular mechanisms underlying these "hybrid effects" may be related to additive and, in some cases, dominant regulatory interactions between parental alleles that act directly on gene regulation in the hybrid transcripts.


Asunto(s)
Characiformes , Transcriptoma , Animales , Characiformes/genética , Perfilación de la Expresión Génica , Secuencia de Bases , Músculos
2.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804272

RESUMEN

In fish, fasting leads to loss of muscle mass. This condition triggers oxidative stress, and therefore, antioxidants can be an alternative to muscle recovery. We investigated the effects of antioxidant ascorbic acid (AA) on the morphology, antioxidant enzyme activity, and gene expression in the skeletal muscle of pacu (Piaractus mesopotamicus) following fasting, using in vitro and in vivo strategies. Isolated muscle cells of the pacu were subjected to 72 h of nutrient restriction, followed by 24 h of incubation with nutrients or nutrients and AA (200 µM). Fish were fasted for 15 days, followed by 6 h and 15 and 30 days of refeeding with 100, 200, and 400 mg/kg of AA supplementation. AA addition increased cell diameter and the expression of anabolic and cell proliferation genes in vitro. In vivo, 400 mg/kg of AA increased anabolic and proliferative genes expression at 6 h of refeeding, the fiber diameter and the expression of genes related to cell proliferation at 15 days, and the expression of catabolic and oxidative metabolism genes at 30 days. Catalase activity remained low in the higher supplementation group. In conclusion, AA directly affected the isolated muscle cells, and the higher AA supplementation positively influenced muscle growth after fasting.


Asunto(s)
Ácido Ascórbico/farmacología , Characiformes/crecimiento & desarrollo , Músculo Esquelético/efectos de los fármacos , Animales , Antioxidantes/química , Antioxidantes/farmacología , Catalasa/genética , Suplementos Dietéticos , Expresión Génica/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , Músculo Esquelético/crecimiento & desarrollo
3.
Artículo en Inglés | MEDLINE | ID: mdl-31077846

RESUMEN

Pacu is a tropical fish with important value to aquaculture. During cellular metabolism, reactive oxygen species (ROS) are produced, which can influence muscle growth. Resveratrol is an effective antioxidant that scavenges ROS and can modulate physical performance preventing oxidative stress. We investigated the effects of resveratrol and exercise on pacu muscle growth characteristics. Four groups were used: fish fed with control diet /without exercise (C); fish fed with control diet/subjected to exercise (CE); fish fed resveratrol-supplemented diet/without exercise (R); and fish fed resveratrol-supplemented diet/subjected to exercise (RE). At 30 days, the RE group presented a significant increase in body weight, fewer muscle fibers in the 20-40 µm and more fibers in the >60 µm diameter class compared to the C group. At day 7, catalase activity decreased in CE and RE groups. Superoxide dismutase activity decreased only in the CE group. Myod and mtor gene expression was higher in R and RE and igf-1 was up-regulated in the RE group. Murf1a level decreased in CE, R, and RE, while sdha expression was higher in the RE group. We suggest that resveratrol in combination with exercise was beneficial for muscle growth and metabolism, increasing the expression levels of genes related to muscle anabolism and oxidative metabolism, besides the decrease of catabolic gene expression. Notably, all of these changes occurred together with muscle hypertrophy and increased body weight. Our results show a positive application for resveratrol in association with exercise as a strategy to improve the growth performance of juvenile pacus.


Asunto(s)
Antioxidantes/farmacología , Characiformes/crecimiento & desarrollo , Músculo Esquelético/crecimiento & desarrollo , Resveratrol/farmacología , Alimentación Animal , Animales , Acuicultura , Characiformes/genética , Suplementos Dietéticos , Expresión Génica/efectos de los fármacos , Humanos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal
4.
Sci Rep ; 9(1): 2229, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30778153

RESUMEN

The postembryonic growth of skeletal muscle in teleost fish involves myoblast proliferation, migration and differentiation, encompassing the main events of embryonic myogenesis. Ascorbic acid plays important cellular and biochemical roles as an antioxidant and contributes to the proper collagen biosynthesis necessary for the structure of connective and bone tissues. However, whether ascorbic acid can directly influence the mechanisms of fish myogenesis and skeletal muscle growth remains unclear. The aim of our work was to evaluate the effects of ascorbic acid supplementation on the in vitro myoblast proliferation and migration of pacu (Piaractus mesopotamicus). To provide insight into the potential antioxidant role of ascorbic acid, we also treated myoblasts in vitro with menadione, which is a powerful oxidant. Our results show that ascorbic acid-supplemented myoblasts exhibit increased proliferation and migration and are protected against the oxidative stress caused by menadione. In addition, ascorbic acid increased the activity of the antioxidant enzyme superoxide dismutase and the expression of myog and mtor, which are molecular markers related to skeletal muscle myogenesis and protein synthesis, respectively. This work reveals a direct influence of ascorbic acid on the mechanisms of pacu myogenesis and highlights the potential use of ascorbic acid for stimulating fish skeletal muscle growth.


Asunto(s)
Ácido Ascórbico/farmacología , Characiformes/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Animales , Ácido Ascórbico/metabolismo , Catalasa/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Expresión Génica , Superóxido Dismutasa/metabolismo
5.
J Therm Biol ; 69: 221-227, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29037386

RESUMEN

The aim of this study was to evaluate the effects of temperature and swimming exercise on fish growth in pacus (Piaractus mesopotamicus). Pacus weighing 0.9 - 1.9g and 2.7 - 4.2cm in standard length were cultivated at an initial density of 120 fish m-3 in 3 recirculation systems containing 6 water tanks at a volume of 0.5m3 each at temperatures of 24, 28 and 32°C. At each temperature, three tanks were modified to generate exercise activity in the specimens and force the fish to swim under a current speed of 27.5cms-1. At the end of the experiment, the following metrics were evaluated: fish performance, morphometry (length, width, height and perimeter in different body positions), and the diameter and density of muscle and subcutaneous ventral adipose tissues. At 28°C, pacus were both heavier and had greater weight gain after 240 days of cultivation. Additionally, exercise improved the feed conversion. An increase of 4°C (30°C) did not provide any improvement in the performance of the fish. However, swimming exercise improved the performance of pacus, providing increases of 38% and a 15% improvement in feed conversion. Both temperature and exercise influenced the body morphology (especially in the caudal region) and the cellularity of white and red muscle fibers and adipocytes.


Asunto(s)
Acuicultura , Peces/crecimiento & desarrollo , Tejido Adiposo/anatomía & histología , Tejido Adiposo/crecimiento & desarrollo , Tejido Adiposo/fisiología , Animales , Peces/anatomía & histología , Peces/fisiología , Desarrollo de Músculos , Músculos/anatomía & histología , Músculos/fisiología , Condicionamiento Físico Animal , Natación , Temperatura
6.
PLoS One ; 12(5): e0177679, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28505179

RESUMEN

Skeletal muscle is capable of phenotypic adaptation to environmental factors, such as nutrient availability, by altering the balance between muscle catabolism and anabolism that in turn coordinates muscle growth. Small noncoding RNAs, known as microRNAs (miRNAs), repress the expression of target mRNAs, and many studies have demonstrated that miRNAs regulate the mRNAs of catabolic and anabolic genes. We evaluated muscle morphology, gene expression of components involved in catabolism, anabolism and energetic metabolism and miRNAs expression in both the fast and slow muscle of juvenile pacu (Piaractus mesopotamicus) during food restriction and refeeding. Our analysis revealed that short periods of food restriction followed by refeeding predominantly affected fast muscle, with changes in muscle fiber diameter and miRNAs expression. There was an increase in the mRNA levels of catabolic pathways components (FBXO25, ATG12, BCL2) and energetic metabolism-related genes (PGC1α and SDHA), together with a decrease in PPARß/δ mRNA levels. Interestingly, an increase in mRNA levels of anabolic genes (PI3K and mTORC1 complex: mTOR, mLST8 and RAPTOR) was also observed during food restriction. After refeeding, muscle morphology showed similar patterns of the control group; the majority of genes were slightly up- or down-regulated in fast and slow muscle, respectively; the levels of all miRNAs increased in fast muscle and some of them decreased in slow muscle. Our findings demonstrated that a short period of food restriction in juvenile pacu had a considerable impact on fast muscle, increasing the expression of anabolic (PI3K and mTORC1 complex: mTOR, mLST8 and RAPTOR) and energetic metabolism genes. The miRNAs (miR-1, miR-206, miR-199 and miR-23a) were more expressed during refeeding and while their target genes (IGF-1, mTOR, PGC1α and MAFbx), presented a decreased expression. The alterations in mTORC1 complex observed during fasting may have influenced the rates of protein synthesis by using amino acids from protein degradation as an alternative mechanism to preserve muscle phenotype and metabolic demand maintenance.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales/genética , Peces/genética , Regulación de la Expresión Génica , Complejos Multiproteicos/genética , Músculo Esquelético/metabolismo , Serina-Treonina Quinasas TOR/genética , Alimentación Animal , Animales , Metabolismo Energético/genética , Ayuno , Perfilación de la Expresión Génica , Diana Mecanicista del Complejo 1 de la Rapamicina , MicroARNs/genética , ARN Mensajero/genética , Succinato Deshidrogenasa/metabolismo , Transcriptoma
7.
PLoS One ; 10(11): e0141967, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26529415

RESUMEN

Pacu (Piaractus mesopotamicus) is a Brazilian fish with a high economic value in pisciculture due to its rusticity and fast growth. Postnatal growth of skeletal muscle in fish occurs by hyperplasia and/or hypertrophy, processes that are dependent on the proliferation and differentiation of myoblasts. A class of small noncoding RNAs, known as microRNAs (miRNAs), represses the expression of target mRNAs, and many studies have demonstrated that miR-1, miR-133, miR-206 and miR-499 regulate different processes in skeletal muscle through the mRNA silencing of hdac4 (histone deacetylase 4), srf (serum response factor), pax7 (paired box 7) and sox6 ((sex determining region Y)-box 6), respectively. The aim of our work was to evaluate the expression of these miRNAs and their putative target mRNAs in fast- and slow-twitch skeletal muscle of pacu during growth. We used pacus in three different development stages: larval (aged 30 days), juvenile (aged 90 days and 150 days) and adult (aged 2 years). To complement our study, we also performed a pacu myoblast cell culture, which allowed us to investigate miRNA expression in the progression from myoblast proliferation to differentiation. Our results revealed an inverse correlation between the expression of the miRNAs and their target mRNAs, and there was evidence that miR-1 and miR-206 may regulate the differentiation of myoblasts, whereas miR-133 may regulate the proliferation of these cells. miR-499 was highly expressed in slow-twitch muscle, which suggests its involvement in the specification of the slow phenotype in muscle fibers. The expression of these miRNAs exhibited variations between different development stages and between distinct muscle twitch phenotypes. This work provides the first identification of miRNA expression profiles in pacu skeletal muscle and suggests an important role of these molecules in muscle growth and in the maintenance of the muscle phenotype.


Asunto(s)
Characiformes/crecimiento & desarrollo , Silenciador del Gen/fisiología , MicroARNs/biosíntesis , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Animales , Proteínas de Peces/biosíntesis , Proteínas Musculares/biosíntesis
8.
Photochem Photobiol ; 91(4): 957-65, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25752215

RESUMEN

The aim of this study was to evaluate the effects of a Gallium Arsenide (GaAs) laser, using a high final energy of 4.8 J, during muscle regeneration after cryoinjury. Thirty Wistar rats were divided into three groups: Control (C, n = 10); Injured (I, n = 10) and Injured and laser treated (Injured/LLLT, n = 10). The cryoinjury was induced in the central region of the tibialis anterior muscle (TA). The applications of the laser (904 nm, 50 mW average power) were initiated 24 h after injury, at energy density of 69 J cm(-1) for 48 s, for 5 days, to two points of the lesion. Twenty-four hours after the final application, the TA muscle was removed and frozen in liquid nitrogen to assess the general muscle morphology and the gene expression of TNF-α, TGF-ß, MyoD, and Myogenin. The Injured/LLLT group presented a higher number of regenerating fibers and fewer degenerating fibers (P < 0.05) without changes in the collagen remodeling. In addition, the Injured/LLLT group presented a significant decrease in the expression of TNF-α and myogenin compared to the injured group (P < 0.05). The results suggest that the GaAs laser, using a high final energy after cryoinjury, promotes muscle recovery without changing the collagen remodeling in the muscle extracellular matrix.


Asunto(s)
Arsenicales/uso terapéutico , Colágeno/metabolismo , Galio/uso terapéutico , Terapia por Láser , Músculo Esquelético/metabolismo , Animales , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA